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Spectral electron momentum density calculation in graphite 
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2100. Adelaide 5001, Auslralia 

Received 13 Febmary 1995 

Abstract. The linea muffin tin orbital method has been used to calculate the energy- 
momentum distribution of valence electrons in graphite along major symmetry directions and as 
the spherical average over the irreducible wedge of the Bdlauin zone. These daIa bridge the gap 
between existing band structure calculations and the emerging electron momentum spectroscopy 
of solids. The calculation h a  been validated by comparison to the most accurate experimental 
data on highly oriented laser-annealed carbon films. 

1. Introduction 

The electronic band structure of graphite has been studied thoroughly by both theory and 
experiment. Band energies at high-symmetry points have been found from angle-resolved 
photoemission measurements and confirmed by density functional calculations within an 
accuracy of 1 eV (see Charlier et a1 (1991) and references therein). Band energies 
are obtained from the density functional calculations as eigenvalues of the KohnSham 
equations (Kohn and Sham 1965). The eigenfunctions, i.e. the wave functions of electrons, 
can also be calculated and are generally much more sensitive to the computation scheme 
details. However, unlike the band energies, the wave functions cannot be measured directly 
in experiment. With the advent and recent development of electron momentum spectroscopy 
on solids a new way of testing electron wave functions has become possible. It is 
known that, under the independent particle approximation, the spectral electron momentum 
density (SEMD) is proportional to the modulus squared of the one-electron wave function 
in momentum space. The SEMD gives the probability of finding an electron within unit 
range of energy and momentum and can be measured directly by the coincidence electron 
momentum spectroscopy based on the (e, 2e) reaction (McCarthy and Weigold 1988, 1991). 

Graphite was the first solid state target used to study valence band electron energy- 
momentum distribution by the (e.2e) technique (Gao et a1 1988). The experimental 
SEMD was compared with a density functional calculation based on the mixed basis 
pseudopotential approach. A good agreement was found between the measurement and 
calculation. However, the significance of this result was diminished by rather poor energy 
and momentum resolutions (8.6 eV and 0.25-0.40 au, respectively). Subsequently, the 
SEMD was measured with a considerably improved resolution (1.5 eV and 0.15 au) on 
amorphous graphite (Kheifets et al 1994). The linear muffin tin orbital (LMTO) method 
based on the density functional theory was used to obtain the spherically averaged SEMD 
which described correctly dispersion of the two major peaks on the experimental spectra. 
However, the spectra contained also some additional features which did not follow the 
calculation and could be attributed to the amorphous nature of the target. Another (e,Ze) 
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study was performed on highly oriented pyrolytic graphite (HoPG) (Vas et al 1994). This 
is a polycrystalline material with  all^ microclystals aligned in the c direction while their 
in-plane orientation is chaotic. The SEMD was probed for momenta directed perpendicular 
to the c axis. The LMTO calculation with spherical averaging in the basal plane was used 
to interpret the experimental results. The experimental spectra contained some unexpected 
features. However, the dispersion and intensity of the main free-electron-like peak were 
described quite accurately. 

Despite improving the energy resolution and the quality of the samples, the test of 
electron wave functions in graphite using the (e, 2e) technique is far from complete. On the 
theoretical side, graphite is the ultimate challenge for the LMTO method which is designed 
for closely packed solids whose elementaty cell can be spanned effectively by touching 
atomic spheres. The elementary cell of graphite is abnormally stretched along the c axis. 
It prevents straightforward application of the LMTO method. 

The purpose of this paper is to get very accurate LMTO results on the band structure 
and the SEMD of graphite to provide a reference for (e,2e) studies on both oriented and 
polycrystalline targets. We demonstrate that the LMTO method is applicable to graphite 
when a sufficient number of empty muffin tin (MT) spheres is added to the elementary 
cell. We show that significant improvement is achieved on the previous LMTO calculations 
(Kheifets er ~l 1994, Vas et al 1994) where no empty spheres were used. 

2. Theory 

We employ the LMTO method as described in the monograph of Skriver (1984). In this 
method the atomic polyhedron is substituted with a number of atomic spheres each of 
which represents a non-equivalent atomic position. The graphite elementary cell has four 
carbon atom positions belonging to the two widely separated layers: 
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layer I (0, 0, -14) (0, ai&, -14) 
layer I1 (0, 0, cf4) ( 4 2 ,  a/2& cI4)  

where a and c are the two major lattice parameters. The graphite structure has a very loose 
packing with the ratio c i a  = 1.66 (c/Q)o, where for the ideal close-packed structure (HCP) 

This creates a difficulty in direct application of the LMTO method because the electron 
potential becomes discontinuous over the elementary cell. The problem, however, can 
be effectively overcome if several fictitious ‘empty’ MT spheres are inserted into the cell 
(Glotzel et al 1980). We chose the following high-symmetry positions for the empty spheres: 

( c l d o  = m. 

layer 0 (0, 0, 0) 
layer Ia (0, 0, - c i a  

The equivalent position at layer IIa, (0, 0, c /2) ,  can be reached by a primitive vector 
translation and is not included in the MT basis. 

Since the elementary cell of graphite is stretched along the c axis and the empty MT 
spheres have to span the cell in this direction we chose the MT radius of the empty spheres 
Re to be larger than the radius RC of the spheres placed at the carbon atom cites. The total 
volume of the MT spheres has to be equal to the volume of the elementary cell: 

This equation leaves one of the radii, Rc or &, free to choose and we use it as an adjustable 
parameter to get the best fit of the band energies at high-symmetry points. Using this 
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procedure we obtain Rc = 1.800 au and Re = 2.546 au. These values satisfy equation (1) 
with the lattice parameters a = 4.641 au, c = 12.654 au (2.456 A and 6.696 A, respectively, 
according to Wyckoff (1963)) and Nc = 4. N. = 2. Here and throughout atomic units are 
used. 

The one-electron wave function within any particular sphere centred at r,? can be written 
as 

1 
l m  TI 

(2) @jk(-r.r) = ~ a ~ ~ i ' ~ m ( ~ l ) - p s ~ ( n )  rl =IF -T,J < R ~ .  

Here IC is the crystal wave vector, j is the band index, &, are the spherical harmonics 
depending on the orbital momentum 1 and its projection m.  The expansion coefficients ai& 
for a given MT sphere s are found by solving the LMTO eigenvalue problem. 

Table 1. Characteristic valence band energies (in eV) of graphite evaluated from the Fermi 
level. 

LMTO Other theoretical Experimental 

a b c d  e f  

Bottom U -20.1 -20.4 -20.1 -20.6 -20.6 
-11.9 -19.5 -19.8 -20.4 

Botromrt -11.9 -8.8 -8.9 -9.0 -8.1 -8.5 
-1.6 -6.7 -6.8 -6.9 -7.2 -6.6 

Top II -5.1 -4.0 -3.5 -3.3 -4.6 -5.5 
Unoccupied 9.4 5.2 3.1 3.6 

Kheifets ern1 (1994). 
Present work. 
Gao er al(1988). 

Eberhardt er al(1990). 
Law er al(1983). 

* Charlier et al(1991). 

By definition, the SEMD is expressed through the Fourier transform of the one-electron 
wave function pjk: 

pj (c .  q) = ( znr3  C n j k  d3r pjk(r)e-'*' 6g.k+G S(E - E,(Ic)) b E 1st BZ. (3) 
Gk IS j2 

Here nJk and Elk are the occupation number and energy of the corresponding oneelectron 
state. The integration in equation (3) is carried out over the unit cell where the wave function 
~)~;.t is normalized to unity. The reciprocal lattice vector G translates the momentum q to 
the first Brillouin zone (BZ). The SEMD is normalized over energy and momentum space to 
the number of valence electrons per unit cell per spin: 

The SEW can be integrated over momentum or energy which gives either the density of 
states 
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or the energy-integrated electron momentum density (EMD) 

Taking advantage of the central field expansion (2) the SEMD can be readily calculated as 

where j i ( q r )  is the spherical Bessel function. The expansion coefficients a:; and the one- 
electron energies Ej(k) are found by solving the LMTO eigenvalue problem. An equivalent 
expression for the EMD pj(q) is similar to equation (7) but does not contain the S function 
of energy. 

We will be concerned with momentum densities along certain high-symmetry directions 
in the momentum space. In this case the SEMD, &(E. q), q = qe, becomes a function of 
only two scalar variables, E and q ,  and can be presented conveniently as a set of energy 
profiles at various momenta. The EMD p,(qe) becomes a function of one scalar variable 
q and can be plotted alongside with the energy bands when the extended zone scheme is 
used. 

When analysing the (e,2e) data on a polycrystalline target the spherically averaged 
momentum densities are essential. They can be obtained by integration over the irreducible 
wedge of the BZ. For the graphite structure the averaged SEMD is obtained as 

1 0 
p j ( c , q ) =  (4n)- ' /dQqp,(c.q)= 3 /ds in19 , /dv9pj (c ,q) .  R (8) 

0 0 

For analysing the (e, 2e) experiments on HOPG-type materials only the polar integration in 
equation (8) is required. 

3. Numerical results 

We present the calculated band energies at high-symmetry points in table 1 along with 
other theoretical and experimental results. As we mentioned above, we use the MT radii as 
adjustable parameters to get the best fit of the band energies. As one can see from the table 
our energies are very close to other experimental and calculated values. By using different 
size empty muffin tin spheres we achieved a considerable improvement on the previous 
LMTO results of Kheifets et al (1994) where no empty MT spheres were used. 

In figure 1 we plot the band energies E,(q) and the EMD p,(q), q =qe, as functions 
of q along the three major high-symmetry directions rK, TM and r A  (columns 1-3, 
respectively). The same momentum scale is used in both band energy (upper row) and 
momentum density (lower row) plots. Where the momentum q extends beyond the first Bz 
a reciprocal lattice vector translation pulls i t  back as indicated in equation (3). 

Because of the quasi-two-dimensional structure, energy bands in graphite can be 
classified as U and 7r according to their transformation under reflection with respect to 
the basal plane. The three U bands (u1, 02 and u3) originate from the hybridized s-px-py 
atomic orbitals whereas the atomic pz orbital gives rise to the x band. Weak interaction 
between the carbon layers doubles each band with a very small separation of the two 
resulting subbands. 
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For the two in-plane directions, TK and rM, only U bands contribute to the EMD. The 
R bands give zero contribution as the corresponding wave functions are odd with respect 
to the reflection while the exponential factor exp(-iq. T )  remains unchanged under this 
transformation. For the out-of-plane r A  direction both U and il bands contribute to the 
momentum density. 

In the same figure 1 we also present the EMD calculations of Gao ef al (1988) obtained 
within a mixed basis pseudopotential approach. Although the two sets of curves are 
generally similar, there is a noticeable difference in magnitude, especially in the U band 
contribution in the TK and rM directions. This is despite the fact that the band energies 
are quite close in both calculations as follows from table 1. This shows that momentum 
densities, calculated through the one-electron wave functions, are much more sensitive to 
the computation scheme details than the band energies. 

From the two plots, the band energies E,(q) and the EMD p , ( q ) ,  i t  is possible to 
reconstruct the SEMD p i ( < ,  q) as a function of energy and momentum q = qe in a certain 
direction. In the rK direction the SEMD disperses along the band uI and then switches 
gradually to u3 thus following almost continuously a free-electron-like parabola up to the 
middle of the second B2. The magnitude of the SEMD drops to zero in the third BZ. The 
same pattern can be seen in the rM direction where the SEMD follows continuously bands 
U, ,  u2 and 6) and dies out in the third BZ. In the perpendicular r A  direction there is almost 
no dispersion both in U and R bands. Because of the asymmetry of the elementary cell 
the 82 is much narrower i n  the PA direction and the SEMD goes through approximately t e n  
zones before it  completely disappears. 

9:o.o 

d 
vi 

I- 1 

- 1 . 3  k L c z 3  Q = L . S  

5 1 0  ,I 20 2 1  

Energy. eV 

Ftgure 2. Spherically averaged spectral momenlum density in graphile 3s a function of energy 
a1 cansfan1 momenta. Energy is relalive to the Fermi level. 

The spherically averaged SEMD P , ( E ,  q) of equation (3) is plotted in  figure 2 as a series 
of energy profiles at different momenta. One can see two main features in the plot. Their 
peak positions and integral intensities are plotted in column 4 of figure 1. The strongest 
peak originates from the U bands and disperses like a freeelecbon parabola. The second 
weaker peak is the ii band contribution. It shows little dispersion and has zero intensity at 
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q = 0. This behaviour has an obvious explanation. In the spherical average the areas close 
to the basal plane have much more statistical weight than those near the c axis. Since the U 
band contribution to the EMD is roughly the same in all directions the spherical average will 
be close to the pattern seen in the basal plane, i.e. an average of the r M  and r K  directions. 
The j? hands have maximum contribution to the EMD from the areas close to the c axis. 
After weighting with the statistical factor this results in a rather weak dispersion which is 
intermediate between the parahala-like dispersion in the r K  and r M  directions and lack of 
dispersion in the r A  direction. The same can be said about the intensity of the j? band. 

" ~ ~ , ~  
Momertum(a.u.) 

Figure 3. Linear grey scale plot of the SEMD pi(', q)  as a function of enera and momentum 
in I'K. rM and rA directions and as a spherical average. Lighter shading represents greater 
intensity. 

These characteristic features of the directional and spherically averaged SEMD are most 
clearly visible in figure 3 where it is plotted with a linear grey scale. To simulate a 
finite experimental energy resolution the theoretical curves are convoluted with a Gaussian 
corresponding to the FWHM = 1.5 eV. One can see a parabola-like dispersion in the U band 
r K  and r M  directions as well as dispersionless j? bands in the r A  direction. The spherical 
average retains the parabolic dispersion of the U hands. The most intense part of the j? 
hands has also a similar type of dispersion. 

At the present moment no high-resolution experimental data on fully oriented crystalline 
graphite samples have been reported. So we cannot test our results on directional momentum 
densities. However, we can validate our calculations by comparison to the experimental 
(e, 2e) data on the carbon samples. 

These samples were prepared by laser annealing of amorphous carbon. This resulted in 
recrystallized films with a c axis perpendicular to the surface, hut no ordering in the other 
direction, i.e. similar to H O E .  After transfer into vacuum (1 x IO-'' Torr) the samples were 
thermally annealed (-600 "C) in order to clean the surface. For an unknown reason, these 
samples show significantly less intensity in between dispersing bands than conventional 
HOPG samples thinned by plasma etching. This could be due to remaining defects (i.e. 
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carbon vacancies) after plasma etching in the latter case. For further experimental details 
see Vas et ai (1994) and Storer et a1 (1994). 

In figure 4 we compare calculated energy profiles at various momenta with experimental 
data on laser-annealed carbon samples. Only the polar integration was carried out in the 
spherical average of equation (8) to simulate in-plane disorientation. In the experiment 
the momentum was kept perpendicular to the c axis, i.e. in the basal plane. However, 
because of the finite momentum resolution, there was a possibility for a finite out-of-plane 
component. We simulate this in our calculation by allowing a small fixed qz component of 
0.15 au. The experimental spectra in figure 4 are shown before and after deconvolution, a 
procedure which was designed to correct for plasmon energy loss contributions (Jones and 
Ritter 1986). 

The two main features, U and n, are reproduced well in our calculation. There is 
a shoulder in the lower-energy part of the experimental spectra which is  absent in our 
calculation. This could be a contribution from the oxygen absorbed on the graphite surface. 
There is also a tail at high binding energies in the experiment, This could be due to the 
plasmon contribution which was not totally subtracted by the deconvolution procedure. It 
could also be correlational satellites which are common in atomic and molecular (e, 2e) 
spectra. A detailed discussion of these hypotheses goes beyond the scope of the present 
article. 

4. Conclusion 

We use the LMTO method to calculate the energy bands and momentum densities in high- 
symmetry directions in graphite and as the spherical average over the irreducible wedge of 
the Brillouin zone. The band energies are quite close to other theoretical and experimental 
results. Considerable improvement is achieved on the previous computation of Kheifets 
er al(1994) by adding empty spheres to the LMTO basis. The momentum densities resemble 
the calculations of Gao et a1 (1988) but a certain disagreement exists largely for in-plane 
r K  and r M  directions. High-resolution (e, ?;e) experiments on oriented crystalline graphite 
targets are desirable to explain this difference. 

Comparison of our in-plane averaged results with the experimental data on laser- 
annealed carbon indicates that the theory is valid for description of the major a and i~ 
peaks. An explanation of the additional features seen in the experimental spectra requires 
going beyond the frame of the present model. 
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